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Objective

In the study presented herein, assumed mechanisms of concrete-steel interaction and the concrete fracture
process are incorporated into an orthotropic plasticity-based damage model in order to prescribe the non-
linear post-failure behaviour of concrete under seismic loading including the strain-softening and the stiffness

degradation.
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The shear stress of the cracked concrete G, due to sliding friction between crack surfaces represents the only
capacity of stress transfer left after a crack is formed (See Fig. 1). G can be reduced by using G¢ = s G,
whete fis is the retention factor due to asperities and aggregate interlock. Bs can be assumed to be unity if the
crack is closed and 0.5 when the crack is open, The stiffness of the cracked element must be softened
isotropically by reducing the elasticity modulus from Ecto Et according to the assumed in Fig. 2. The tensile
stress fi produced in a crack is integrated along the crack faces in order to obtain equivalent nodal forces at
both faces of the crack. The fracture energy Gt is evaluated from the Bazant's relationhip - 1986, as follows:

Gr=1£2h/2 B, (MPa) where h =vYA, A isthe finite clement area 5}
Crack model
Triangular elements with quadratic shape functions are considered to model the singularity behaviour at the
crack tip (See Fig. 4).
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The finite element solution can provide the displacements around the crack tip for the combined opening
and sliding cracking mechanism (i.e. types I and II, respectively) by considering the following :
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The nodal displacements at nodes B and D can be calculated from Eq. (3) :
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For the combined opening and sliding cracking mechanism the stress intensity factors K; and Ky at element
quarter points B and D shown in Fig. 5 are determined by using the following expressions (See Fig. 7 ):
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Cracking of concrete in Finite Element Analysis

The concrete is considered isotropic before cracking. When the cracking is initiated due to excessive tension

in the axis normal to cracks the concrete becomes orthotropic, this stage is characterized by Eq. (5) :
Because the tensile cracking has occurred previously

on En Vv 0 gn in a plane defined by the normal n , the biaxial condi-
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Moedel problem for a crack in tension

A single RC bridge pier supporting a typical steel girder (See Fig. 8) is analized herein. The muotion
considered i$ a piece-linear wave of 4 sec. of duration and 0.4g of max. acceleration.The time step is 0.05 sec.
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Mg along the height of the pier. The change in t0.000
the slope Indicates the sensivity to cracking from — .
approximately the midheight of the pier (at which )
lap-splices are considered) to the top. 5 e
This -slope is expected to decrease up to small 2 am
values of moments in case of slender columns. -
Cracking of concrete at the bottom of piers are v
produced by relative large moments. Finally, this it - -
figure also indicates the need of strong confinement e e v e e
from the lap-splice zone to the bottom of the pier. Cracking rotation ( rad x 107%)
Fig. 9 Cracking rotations along
o the height of the pier
oo Fig. 10 shows the variation of ultimate displa-
T o cements along the height of the pier. The brus-
= que change at approximately the midheight of
B o the pier implies a large rotation and deforma-
5 tion at the midheight. This effect is physically
reflected in the extensive concrete cracking
200 and twisting of steel reinforcement. The large
o displacement implies a very significative degra-
¥i.000 19000 20000 2M000  25.000 27000 dation in the shear capacity at this section. Un-
Ultimate.displacement (cm) gier this conditions the effective cross section
is strongly reduced exposing reinforcing bars
Fig. 10 Ultimate displacements \ghitch w(lithoutlFr((j)pert cm}tfinementd will bucklle
. . rst, and pulled-out after, producing the
versus height of the pier collapse of this pier. P &
Conclusions

Cracking of RC bridge piers under cyclic loading can be represented by the combination of both the
nonlinear finite element theory and the mixed-fracture mode of fracture mechanics theory. The adopted
concrete tensile stress law is considered to be decisive in the cracking stage. Finally, results shows reasonable
agreement if they are compared with seismic response of similar structures obtained by other researchers.

529




