安芸灘大橋(吊橋)の地震応答特性について

広島県道路公社	正会員	鳥海陶	备—	広島県道路公社		沖本文雄
広島県道路公社		新田	勉	綜合技術コンサル	正会員	西森孝三
				綜合技術コンサル		大畑啓一

1.はじめに

安芸灘大橋(図 - 1)は、呉市の東、約15km に位置する吊橋(中央径間長 750m)である。架橋地点 は芸予地震(表-1)の震源に近く、これを考慮した入力地震動に対して設計がなされた(図-2参照)。さ らに、地震に対する準備の一環として、地震時の弱点となりうる部位の把握を目的として、設計条件以上の 地震入力に対する応答計算を行った。本論文は、その解析結果(上部工)の概要を報告するものである。

2.入力地震動

入力地震動は、神戸海洋気象台で観測された兵庫県南部地震(N-S 成分)を基本とし、安芸灘大橋の基礎 が強固な岩盤(S波速度=1,500m/s 程度)上に設置されていることを考慮して補正を行った。補正した各基 ・礎位置での地震動算出結果(加速度応答スペクトル)を図 - 2 に示す。これより、各基礎での地震動の違い がほとんどないことから、上部工応答計算には共通の入力を用いた。

なお、本計算では水平2方向(橋軸方向、橋軸直角方向)に、上記の地震動を考慮した。

10000

1000

100

10

0.1

0.001

0.01

加速度応答スペクトル(gal)

図 - 1 安芸灘大橋

3. 解析手法

上部工の応答解析には3次元モデル(魚骨モデル) を用い、桁を吊るハンガーは間引いている。解析手 法としては応答スペクトル法を用い、1~400次 までのモードを考慮した。累積有効質量比は3成分 とも 99.9%となっている。また、減衰定数は、上部 工で0.02、下部工で0.05、基礎工で0.20とした。

> 図 - 2 加速度応答スペクトル

01

周期(秒)

+++++

1

10

4.上部工応答の特徴

主塔断面に発生する最大曲げモーメントを図 - 3 に示す。塔基部、および下部水平材付近に大きなモーメ ントが発生しているが、最大応力(橋軸、橋軸直角方向の合成)は、降伏応力以下に収まっている(表-2)。

キーワード:吊橋,上部工、地震応答, 連絡先:新田勉、広島県道路公社、TEL:082-227-8636、FAX:082-227-8691 1A

2P 3P

4A

当初設計

- H13芸予地震

4.1 主塔

橋軸方向

4.2 桁

桁本体に発生する応力は比較的小さく、問題とならなかった。 桁の橋軸方向変位を拘束するセンターステイ、エンドステイ(図 -4参照)に大きな張力が発生し、破断する(表-3)。そこで、 ステイを外した系で、再度、応答計算を行った結果、橋軸方向変 位が設計伸縮量をこえるため伸縮装置が破損するが、桁、塔の本 体構造物同士の衝突はないとの結果を得た(表-4)。

桁の橋軸直角方向の変位により、これを桁端で抑えているウィ ンド沓(水平方向支承)に、大きな水平力が働く(表 - 5)。ウィ ンド沓は、塔、およびアンカレイジから付きだした片持ち梁(ウ ィンドタング)がせん断キーとなって水平方向変位を拘束している(図 - 4参照)。地震による水平力により、ウィンドタング基部に大きなモ ーメントが発生し、局部座屈が発生するとの結果を得た。特に、2P 主塔の側径間側のウィンドタングにおける応力超過が著しい。この損 傷によりウィンドタングが完全に本体(塔、アンカレイジ)から離れ るとは考えにくいが、座屈後の挙動を解析することが困難であるため、 安全側の仮定としてウィンド沓(2P側径間)をはずして橋軸直角方 向に自由に振動するモデルで、応答解析を再度、実施した。

その結果、橋軸直角方向変位により塔から桁を吊っているタワーリ ンクに水平力が移り、降伏応力を越えてしまった。そこで、タワーリ ンクも外した系で応答計算を実施したところ、橋軸直角方向変位が大 きいものの、桁と塔の本体構造物同士の衝突には至らないとの結果を 得た(表 - 6)。なお、タワーリンクが破断しても、桁はハンガーで支 えられるため、橋全体の崩壊には至らない。

4.3 ケーブル

ケーブルについては、上述のステイを除いて発生応力は全体的に小 さく、問題にならなかった。

5.おわりに

本論文の準備中に、平成13年芸予地震が発生した。安芸灘大橋で は本解析などを基に点検した結果、損傷は発生していなかった。同橋 の動態観測システムで地震波(図-2参照)および構造物応答が記録 された。今後、このデータの解析を進めてゆく予定である。

 モーメント
 モーメント

 (橋軸直角方向地震時)
 (橋軸方向地震時)

 (橋軸立角方向地震時)
 (橋軸方向地震時)

橋軸直角方向

図 - 3 塔柱モーメント(tonf·m)

表 - 2 塔発生応力

部位	最大発生応力		
基部	3,446 kgf/cm ²		
水平材	$3,295 \text{ kgf/cm}^2$		
基部	$2,915 \text{ kgf/cm}^2$		
水平材	$2,925 \text{ kgf/cm}^2$		
	部位 基部 水平材 基部 水平材		

降伏応力 = 3,600 kgf/cm²

表 - 3 ステイ張力

	発生張力	破断張力
1A ፤ንኮ አታイ	309 tonf	$246 ext{ tonf}$
センターステイ	491 tonf	391 tonf
4A ፤ንኑ አታና	339 tonf	$246 ext{ tonf}$

表 - 4 橋軸方向変位

	変位量(mm)		
部位	地震時	伸縮装置	
		設計条件	
1A	247	170	
2P 側径間	436	320	
2P 中央径間	393	700	
3P 中央径間	470	700	
3P 側径間	508	320	
4 A	246	170	
本体間遊間 = 800 ~ 1.185mm			

ステイなし

表-5 ウィンド沓水平力

	水平力(tonf)	
部位	地震時	降伏発生
		水平力
1A	410	351
2P 側径間	556	366
2P 中央径間	323	458
3P 中央径間	286	385
3P 側径間	400	334
4 A	304	344

表 - 6 橋軸直角方向変位

	変位量(mm)		
部位	地震時	本体遊間	
2P 側径間	401	453	
ウィンド杏 タワーリンクかし			