弾塑性有限変位解析による長方形断面鋼製橋脚の耐震性能評価に関する一検討

大阪大学大学院 学生	員 鈴木	雄大 オ	大阪大学大学院	正会員	小野	潔
鳥取大学 正会	:員 池内領	智行 石川	島播磨重工業	正会員	岡田誠	司
		ナ	、阪大学大学院	フェロー	西村宣]男

1.研究の背景と目的

兵庫県南部地震により,あらためて土木構造物の耐震性確保の重要性が認識された.既往の研究では,正方 形断面鋼製橋脚の耐震性能に関する研究が多くなされており,最大水平荷重,最大荷重時変位の算定式¹⁾²⁾が 提案されている.一方で長方形断面鋼製橋脚に関する研究はまだ十分でなく,その耐震性能が明らかにされて いるとは言えない.前野ら³⁾は,従来のコンクリートを充填した正方形断面鋼製橋脚の耐震性能照査法を用い て,長方形断面鋼製橋脚の耐震性能の照査を行うことは合理的でないことを示した.その研究の中で柱基部に コンクリートを充填した長方形断面鋼製橋脚の耐震照査法を提案した.コンクリート未充填柱についても,長 方形断面鋼製橋脚の耐震性能評価に,従来の正方形断面鋼製橋脚の照査法を適用してよいのか明らかにされて いない.そこで,コンクリート未充填長方形断面鋼製橋脚の耐震性能評価に,正方形断面鋼製橋脚の評価式が 適用できるか検証する必要がある.耐震性能を評価する方法には,実験により鋼製橋脚の挙動を明らかにする 方法と,数値解析による方法が考えられる.実験による方法では,その規模の大きさや実験にかかる時間,予 算の都合などから多く実施することが困難である.そこで実験のみではデータが足りないところを解析によっ て補完する必要がある.そのためには解析プログラムの精度が重要となってくる.本研究で用いている解析プ ログラムが,長方形断面鋼製橋脚の耐震性能を正確に評価できるか明らかではない.そこで本研究では,解析 プログラムの適用性を検証することとした.

2.解析方法

解析プログラムは,本研究室で開発され た弾塑性有限変位解析プログラム CYNAS⁴⁾ を元に,構成式の一部を修正⁵⁾して使用する. 初期たわみや残留応力は考慮していない. 構成式に含まれる材料パラメータは,文献4, 5に示されている値を用いることとした.荷 重載荷は,橋脚に一定の軸力を作用させた 状態で,橋脚の頂部に降伏水平変位_{y0}の整 数倍の変位を交番載荷させた.

3.解析プログラムの正方形断面鋼製橋 脚モデルへの適用について

解析プログラムが,正方形断面鋼製橋脚 モデルの正負交番載荷実験の解析において, 実験を精度よく表せるか確認されていない. そこで,正方形断面モデルの実験の解析に おいて十分な精度を持っているかどうか検

100 2500 10% error margin 80 2000 ⊋¹⁵⁰⁰ 60 Ê 编¹⁰⁰⁰ · 9 40 8 500 20 • M20 м20 M22 M22 500 1000 1500 実験値(kN) 2000 2500 40 60 実験値(mm) 図-1 最大荷重・最大荷重時変位の比較

表-2	最大荷重と最大荷重時変位の比較

	解相	斤値	実験値		
供試体	最大荷重	最大荷重時変位	最大荷重	最大荷重時変位	
	H _{max} (kN)	Hmax(MM)	$H_{max}(kN)$	_{Hmax} (mm)	
M20	1817	63.5	1810	64.5	
M22	2088	76.2	2064	84.4	

キーワード:耐震設計,鋼製橋脚,長方形断面,弾塑性有限変位解析 住所:〒565-0871 大阪府吹田市山田丘 2-1 TEL:06-6879-7598 FAX:06-6879-7601

表-1 モデル諸元

11 + 5 /1	鋼種	鋼材 降伏点	外径寸法	断面積	幅厚比パラメータ		パネル数	板厚	有効長
供試体		yM		Α	R _R	R _F		t	l=2h
		(Mpa)	(mm)	(cm ²)				(mm)	(cm)
M20	SM490	354	900*900	474.4	0.33	0.34	6	10	684.6
M22	SM490	354	900*900	538	0.33	0.24	6	10	684.6
/II + - F /	断面二次 モーメント	細長比 パラメータ	縦リブ寸法	横リプ間隔	リブ	剛度	軸力	軸力比	軸力比
供試体	1			а	1/1	1/ 1 req	N	N/N _{yN}	N/N _{yM}
	(cm ⁴)		(mm)	(mm)			(kN)		
M20	593080	0.256	74*8	600	0.91	2.42	2236	0.15	0.13

証を行った.ここで既往の実験として,表-1に示す諸元のコンクリート未充填・縦リブを有する正方形断面 供試体¹⁾を対象とした.

実験結果と,構成式を修正した解析プログラムの解析結果から表-2,図-1にそれぞれのモデルについて 最大荷重,最大荷重時変位をまとめた.横軸に実験値,縦軸に解析値をとった.実線は(実験値=解析値)を 表し,破線は10%誤差範囲を表している.最大水平荷重,最大荷重時変位は,精度よく再現できた.この解 析では,構成式に含まれる材料パラメータを既往の研究から引用しているが,実験から求めることができれば さらに精度のよい解析となることが予想される.以上の結果より,構成式を修正した解析プログラムが正方形 断面モデルの実験を精度よく再現できることが確認された.

4.解析プログラムの長方形断面鋼製橋脚モデルへの適用について

次に,長方形断面コンクリート未充填柱の解析において十分な精度を持っているかどうか検証した.解析モ デルは,辺長比が1:2の供試体⁶とした.強軸方向に載荷したもの,弱軸方向に載荷したものの,2つの供 試体について検討を行った.モデルの諸元を表-3に示す.

表-3 モデル諸元

鋼種		降伏点	外径寸法	断面積	幅厚比 パラメータ	パネ	ル数	板厚
供試体		уM		A	R _R	<web></web>	<flange></flange>	t
		(Mpa)	(mm)	(cm ²)				(mm)
弱軸	SS400	310.4	300*600	135.4	0.50	2	4	6
強軸	SS400	310.4	600*300	135.4	0.49	4	2	6
/11. *. */1	縦リブ寸法	断面二次モーメント	断面二次 半径	細長比 パラメータ	有効長	横リブ間隔	軸力	軸力比
供試体	縦リプ寸法	断面二次 モーメント I	断面二次 半径 「	細長比 パラメータ	有効長 I=2h	横リブ間隔	軸力 N	軸力比 N/Ny
供試体	縦リプ寸法 (mm)	断面二次 モーメント I (cm4)	断面二次 半径 r (cm)	細長比 パラメータ (cm)	有効長 I=2h (cm)	横リブ間隔 (mm)	軸力 N (kN)	軸力比 N/Ny
供試体弱軸	縦リプ寸法 (mm) 60*6	断面二次 モーメント l (cm4) 20822	断面二次 半径 r (cm) 12.4	細長比 パラメータ (cm) 0.51	有効長 I=2h (cm) 510	横リブ間隔 (mm) 450	軸力 N (kN) 593.3	軸力比 N/Ny 0.15

解析結果の最大水平荷重および最大荷重時 変位を表 - 4 にまとめた.これを正方形断面と 同様に横軸に実験値,縦軸に解析値をとり,解 析の精度を確認した(図-2).最大荷重は10% 誤差領域に入っており,非常に精度良く実験を 再現できている.最大水平荷重時変位には若干 のずれがある.これは材料パラメータを実験か ら求めていないためであると考えられ,これら を実験から求めることができればさらに精度 のよい解析となることが予想される.

表-4 実験値と解析値の比較

	解相	折値	実験値		
供試体	最大荷重	最大荷重時変位	最大荷重	最大荷重時変位	
	$H_{max}(kN)$	_{Hmax} (mm)	$H_{max}(kN)$	_{Hmax} (mm)	
22 赤山	229.3	51.3	242.2	69.2	
习习甲田	-232.7	-52.7	-230.5	-57.0	
冷静	397.6	39.5	370.1	35.6	
口出田	-399.6	-32.2	-397.0	-39.2	

5.まとめ

構成式を修正した弾塑性有限変位解析プログラムを用いて,正方形断面鋼製橋脚の最大水平荷重,最 大荷重時変位を精度よく求められることを確かめた.また,初期たわみや残留応力の導入,正確な材 料パラメータを求めることでさらに精度を上げることが可能である.

長方形断面鋼製橋脚についても,弾塑性有限変位解析プログラムで最大水平荷重,最大荷重時変位の 精度について確認した.これらについても,初期たわみや残留応力の導入,正確な材料パラメータを 求めることでさらに精度を上げることが可能である.これにより,長方形断面鋼製橋脚の耐震性能を 正確に評価することができると考えられる.

【参考文献】

1)建設省土木研究所:道路橋橋脚の地震時限界状態設計法に関する共同研究報告書(総括編),第219号,1999.

2)(社)土木学会・(社)日本鋼構造協会:鋼構造物の耐震解析用ベンチマークと耐震設計法の高度化,2000

³⁾前野裕文ら:コンクリートを柱基部に充填した長方形断面鋼製橋脚の耐震照査法,構造工学論文集,Vol.48A,pp667-674,2002 4)池内智行:鋼材の塑性履歴構成式の定式化と繰り返し外力を受ける鋼構造物の変形能の評価への応用に関する研究,大阪大学学位論文,1998 5)鈴木雄大,小野潔,西村宣男:繰り返し塑性履歴を受ける鋼材の実用的構成式,第56回年次学術講演会講演概要集,I-A248,pp.568-569,2001 6)(社)日本橋梁建設協会:鋼製橋脚の耐震設計マニュアル(ラーメン橋脚等の実験および実績調査編),2001