耐震性能照査に用いる構造解析モデルの検討

北武コンサルタント株式会社	正会員	○笠井	尚樹
北武コンサルタント株式会社	正会員	渡邉	忠朋
財団法人鉄道総合技術研究所	正会員	谷村	幸裕
財団法人鉄道総合技術研究所	正会員	佐藤	勉

1.目 的

現在,比較的簡易に構造物をモデル化する方法とし て基礎構造を上部構造の支持バネとしてモデル化する SR モデルを用いて耐震性能を照査している場合が多い. しかし,本来は上部構造と基礎構造を一体としてモデ ル化することが望ましく, SR モデルの適用にあたって は一体モデルとの差異を検証しておく必要があると考 える.

そこで,SR(上部・下部分離)モデルとの比較検討 のために上部・下部一体モデルを用いて動的非線形解 析を行い,両者の応答性状の比較検討を行った.以下 に,その概要を示す.

2. 検討概要

2.1 構造物のモデル化

側面図

本検討は,図1に示す鉄道用橋脚(杭基礎構造)を 用いて行った.

SR モデルの概要を図2に示す.SR モデルの基礎構造 のバネは,橋脚-基礎-地盤バネをモデル化した変位増 分静的解析を行い,フーチング位置での支持バネに置 換した値を用いた.

上部構造および基礎構造の一体モデルの概要を図3

に示す.一体モデルでは,基礎地盤は地盤バネにモデ ル化した.

なお、本来、地盤そのものと基礎部材および構造物 全体系を含めたモデルを一体モデルとすべきであるが、 本検討では、上記のモデルを一体モデルと称すること とした.

2.2 橋脚躯体の非線形性のモデル化

橋脚躯体の非線形性は,図4に示すように部材の曲 げモーメントと部材角の関係で考慮することとし,復 元力特性は JR 総研モデル^{1) 2)} とした.

なお、フーチング、杭および地盤バネは弾性体とした. 部材の初期減衰は 5%、地盤バネの初期減衰は 10%と した.

正面図

連絡先: 〒062-0020 札幌市豊平区月寒中央通7丁目 4-7 北武第2ビル TEL 011-851-3181 FAX 011-851-4329

土木学会第57回年次学術講演会(平成14年9月)

2.3 地震波形の入力方法

本検討における地震波は,地表面波を杭の各節点に 入力することとした.

なお,SR モデルの入力波形との整合性を図るために 地表面における加速度波形は,SR モデルと同一の波形 になるように配慮してある.

検討ケースを総括して表1に示す.

表1 検討ケース

	解析モデル
CASE1	一体モデル
CASE2	SRモデル

3.解析結果および考察

(1) 応答性状の比較

フーチング重心位置と橋脚天端の水平変位の時刻歴 波形を図5に示す.なお、図中には、橋脚躯体の曲げ ひび割れ発生時(θ_{o})、曲げ降伏時(θ_{y})および基礎の最 大水平変位時(δ_{11max})および最大応答部材角時(θ_{max})の 水平変位を示す.一体モデルおよびSRモデルのいずれ のケースにおいてもフーチング重心位置の水平変位の 最大値は橋脚躯体の曲げ降伏時と概ね一致する結果と なった.しかし、橋脚基部が最大応答部材角に達する 時のフーチングの水平変位は、フーチングの水平変位 が最大となる時点とは一致しない結果となる.

この結果は、通常実施されている荷重分布を仮定し た静的非線形解析では、このような現象は再現できな いことから、静的非線形解析では構造物全体をモデル 化しても動的な影響を適切に考慮した応答値を算定す ることが困難であることを示唆していると考えられる.

(2) 応答値の比較

橋脚躯体が曲げひび割れ,曲げ降伏する時点の基礎 の変位や基礎の最大水平変位は,CASE2のSRモデルの 方が,大きな応答値を示す結果となった.また,橋脚 躯体の部材角の最大応答値についてもCASE2の方が大 きくなる結果となった.

4.結論

以上の検討の結果,解析モデルに関わらず橋脚躯体 が最大応答部材角に達する時と基礎構造が水平変位の 最大値に達する時刻は異なり,静的な解析ではこのよ うな現象は再現することが困難であること,SR モデル は橋脚躯体自身の応答値に関しては一体モデルよりも 大きな応答を示す傾向があること等が推測される知見 が得られた.本検討は,橋脚の躯体のみの非線形性を 考慮した一例に過ぎないが,この種の検討の蓄積が精 度の良い耐震性能照査方法の確立のためには必要であ ると考えられる.

参考文献

 1)鉄道総合技術研究所編:鉄道構造物等設計標準・同 解説(耐震設計),平成11年10月

 2)渡邉,谷村,瀧口,佐藤:鉄筋コンクリート部材の損傷 状況を考慮した変形性能算定手法 土木学会論文集 No,683/V-52,32-45,2001.8.

表 2 応答解析結果

I-420