鉄道RCラーメン高架橋の地震時応答に関する一考察

㈱復建エンジニヤリング ○正会員 江口 聡

㈱復建エンジニヤリング	正会員	井口	光雄
㈱復建エンジニヤリング		野田	幹雄
京成電鉄㈱		加藤	誉夫

1. まえがき

地震時における構造物の応答は、地盤の固有周期と構造物の固有周期及び入力地震動に依存する。ここでは実際に設計された構造物として2層1径間、2層3径間、2層4径間RCラーメン高架橋を対象とし、 L2地震動を設計地震動とする静的非線形解析を行い、種々の条件下での構造物の応答値の変化を主に等価 固有周期に着目して考察した。

2. 構造解析

図 2.1 構造物モデル縦断面図

図 2.2	構造物モデル横断面図
+	1 与 舟 排 生 胁 司 答 タ 仲

径間	方向	柱高h (m)	液状化 m	径間	方向	柱高h (m)	液状化 m		
		6.745	1.0			6.745	1.0		
1		6.921	1.0	1	1		6.921	1.0	
		6.190	1.0				6.190	1.0	
		4.662	7.5			揷	4.662	7.5	
3	橋	4.760	7.5			「同 市山	4.760	7.5	
		3.612 7.5 3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11日	3.612	7.5			
	軸	4.462	2.0	_		山	臣	4.462	2.0
		6.924	2.0		д	6.924	2.0		
4	6.057 3.0 5.579 3.0	3.0	4		6.057	3.0			
		3.0		r	5.579	3.0			
-									

(1) 構造物概要

本計算に用いた構造物モデルは図 2.1、図 2.2 に示すような 断面をもつ、1 径間、2 径間および 4 径間の地中梁を有する 2 層 R C ラーメン高架橋である。基礎は杭基礎、杭径 1.2m、 杭長 30m、橋軸直角方向に 3 本配置されている。対象構造物 の寸法関係を1にまとめる。

(2)計算概要

今回の解析に用いた表層地盤はすべて地盤種別 G5 地盤¹⁾ であるが、液状化層厚はそれぞれ異なる。検討ケースは、① 液状化を考慮した解析ケース、②地盤変位を考慮したケース、 ③常時の3つで計算を行った。計算に用いたモデルの地盤条 件では、液状化すると判定された層では地盤ばねは一切考慮 されず、液状化層を考慮した耐震設計上の地盤面よりも上に ある杭は突出杭として扱った。また地盤変位考慮のケースで は、応答変位法により算出される表層地盤の設計水平変位量 を入力値として計算を行った。検討ケースは、表1に示す各 ラーメンについて、常時および液状化・地盤変位考慮のケー スを含め計 75 ケースとした。

解析モデルは2次元骨組モデルとした。また、杭基礎であることから、骨組解析モデルは地盤-基礎-構造系一体としてモデル化した。解析プログラムにはRESP-Tを使用した。

非線形特性として柱下端は曲げに対して材端バネをトリリ ニヤ型のM- φ関係を用いてモデル化した(図3)。等価塑性 ヒンジ長 Lp は死荷重時の軸力より算出した値で行い軸力変 動を考慮した。梁部材は線形モデルとし、地盤はばねモデル としバイリニヤ型の非線形性を考慮した。杭も柱同様M-φ 関係を用いてモデル化し部材長は1D程度に分割した。

キーワード:等価固有周期、液状化、応答変位法、プッシュオーバーアナリシス、耐震設計 連絡先:〒104-0061 東京都中央区銀座 1-2-1、㈱復建エンジニヤリング、TEL(03)3563-3128

1)鉄道総合技術研究所:鉄道構造物等設計標準·同解説 耐震設計、丸善、1999.10

2)鉄道総合技術研究所:鉄道構造物等設計標準・同解説 耐震設計 橋梁および高架橋耐震設計照査の手引き