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Drying shrinkage, which has long been a subject of study, occurs when concrete is exposed to a low 

relative humidity (RH). Shrinkage is also an issue in concrete with a low water/cement (w/c) ratio, which 

is now being widely used. Although a low w/c results in high strength and low permeability, it has been 

found that autogenous shrinkage becomes non-negligible. Any shrinkage would induce tensile stress, 

which can cause cracking and undermine the long-term performance of a structure. To evaluate and 

predict the influence of shrinkage, empirical formulas have been suggested in previous studies. From 

another standpoint, shrinkage behavior is associated with microscale thermodynamic properties, such as 

hydration, pore-structure formation, and the behavior of water in micropores. These properties vary 

according to the raw materials, mix proportion, age, and ambient conditions of the concrete. Without 

substantially grasping the relationships among the effects of these properties, it is difficult to provide an 

appropriate evaluation of shrinkage under arbitrary conditions. Therefore, it is important to establish a 

model that couples shrinkage behavior with microscale properties.  

 

In a previous study, a multi-scale model for shrinkage behavior was developed by the Concrete 

Laboratory at the University of Tokyo. In this model, the hydration process, pore-structure formation, 

moisture equilibrium and transport were simultaneously coupled to explain the state of water in the 

micropores (Fig. 1 and Fig. 2). The forces driving shrinkage, consisting of capillary tension and surface 

energy change, were quantified from this understanding of the water state (Fig. 3) and were applied to the 

cement matrix. In addition, a two-phase stiffness model was established to describe the deformation 

response. Taking the mix proportion, specimen dimensions, and ambient conditions as inputs, the 

multi-scale model is theoretically capable of simulating autogenous or drying shrinkage simply by setting 



the boundary conditions as sealed or exposed. Although this model has proven to be effective in past 

verifications, there remain discrepancies from test results. For example, the model greatly underestimates 

the rapid development of autogenous shrinkage in concrete with a low w/c, as indicated by the arrows in 

Fig. 4. For practical application, an improvement in precision is desired. 

 

 

Fig. 1 Pore structure formation 
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Fig. 2 Moisture state in pore structure 
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Fig. 3 Driving forces in existing model. 
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Fig. 4 Analysis of autogenous shrinkage 

 

In this paper, the authors further investigate shrinkage on the basis of microscale phenomena, leading to a 

proposal for an enhanced model of shrinkage behavior. The enhancement work focuses on initial 

autogenous shrinkage and the intrinsic driving forces behind shrinkage at the microscale. Since the 

existing model underestimates the rapid development of autogenous shrinkage in concrete with a low w/c, 

combined with self-desiccation, autogenous shrinkage at an early age is first discussed. 

The reason for the discrepancy in the existing model is thought to be that, during early self-desiccation, 

the large degree of deformation cannot be effectively simulated because the skeleton of the cement paste 

has not completely formed. Hence, the authors discuss the influence of w/c based on a microscale 

hypothesis (Fig. 5). Initially, the cement particles are dispersed in water and their average spacing 

depends on the w/c. After initial setting, a portion of the total chemical shrinkage induces micropores, 

while the residual amount causes autogenous shrinkage. When w/c is high, the average distance between 

the cement particles is relatively large, so the particles hydrate independently. For a low w/c, the distance 

decreases and some particles even come into contact with each other. With self-desiccation taking place, 



they may tend to move toward each other more significantly as local deformations join up or accumulate, 

resulting in a significant macro-volume change. Hence, an approximate model is proposed to quantify 

autogenous shrinkage at an early age based on its relationship with chemical shrinkage. As an 

approximation, the portion of chemical shrinkage contributing to autogenous shrinkage at an early age is 

quantitatively calculated from the chemical volume change and the distance between cement particles, 

and that amount of shrinkage is added to compensate for the underestimation in the existing model. 
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Fig. 5 Influence of chemical shrinkage on macro-volume change as result of inter-particle distance 

 

Furthermore, the driving forces for shrinkage are also discussed and modified in this study. In the existing 

model, capillary tension was assumed to be the principal driving force in all pores of various sizes, but 

this would cause an overestimation of the long-term shrinkage in the analysis. Most capillary pores are 

microscale in reality. Therefore, it is reasonable to assume that capillary tension is active. Conversely, for 

gel pores at the nanometer scale, capillary tension may not be the dominant mechanism. Evidence for this 

is that, in fine pores, physically absorbed water occupies a larger portion. Thus, there is a decline in the 

capillary tension, which is related to the lower proportion of condensed water. It has been pointed out in 

past research that, in nanometer pores, capillary tension is much smaller than the value calculated by the 

Kelvin equation. Additionally, in fine pores, the water flow may no longer be continuous. Water is 

confined by the nanospace and becomes a unit with only some tens of molecules. Thus, water movement 

may be discrete and closer particle movement. This means that it is more reasonable to treat the driving 

force in nanopores separately from capillary tension. Therefore, the authors consider the dominant driving 

force in nanometer-scale pores to be disjoining pressure rather than capillary tension. That driving force is 

only active at low RH values, and does not contribute significantly to autogenous or drying shrinkage at 

relatively high RH values. 

According to the above discussion, the forces driving shrinkage resulting from capillary tension and 

disjoining pressure are separated and quantified independently in the enhanced model (Fig. 6). Capillary 

tension is assumed to be active only in relatively coarse pores, whereas disjoining pressure dominates in 



fine pores on the nanoscale. A boundary pore radius rbr, which is assumed to be 10 nm, is set as the 

separator between capillary tension and disjoining pressure. These two driving forces are quantified from 

the water state in the pores using proposed formulas.  
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Fig. 6 Driving forces in pores with different sizes 

 

The autogenous shrinkage shown in Fig. 4 is recalculated using the enhanced model (Fig. 7). In this 

analysis, it can be seen that shrinkage strains increase rapidly in the initial days of curing before rising 

more gradually as time passes. These results agree better with the test results than the existing model. 

Shrinkage amounts under drying conditions for various w/c are also calculated (Fig. 8). The results are in 

clear agreement with the test results, with the reduced shrinkage at lower values of w/c well modeled. 

Further, the results of analysis using the existing and enhanced models for a normal w/c (50%) are 

compared (Fig. 9). Here, whereas analysis with the existing model underestimates shrinkage for the first 

tens of days (though the final value is satisfactory), the enhanced model is consistent with the test results 

over the whole drying period. 
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Fig. 7 Analysis of autogenous shrinkage with 

enhanced model 
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Fig. 8 Analysis of shrinkage behavior under 

drying conditions with enhanced model 
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Fig. 9 Comparison of drying shrinkage precision between existing model and enhanced model 

 


