座屈設計ガイドライン講習会 (2005年10月28日,東京;11月28日,大阪)

第19章 変形性能

名古屋大学大学院 宇佐美 勉

内容	
19.1	概説
19.2	耐震要求性能と照査法
19.3	単柱式鋼製橋脚の限界値の推定式
19.4	板要素および短柱の変形性能評価
19.5	せん断を受ける板要素およびはりの変形性能評価
19.6	構造物の変形性能評価法-Pushover解析
20.7	まとめと将来展望

なぜ変形性能?
 耐震照査法
 限界値の算定法
 まとめと将来展望

1. なぜ変形性能?

大地震に対しては、塑性変形による履歴減衰を期待する 耐震設計が経済的→終局点までの変形性能の利用

繰返し荷重を受ける鋼構造物のH-δ関係の包絡線

Box: Strong stiffeners

Box: Weak stiffeners

Pipe: Thin-walled

(まとめ)大地震時の鋼構造物の終局限界

1. 塑性域での局部座屈と全体座屈の連成座屈 2. 低サイクル疲労:研究途上(終局ひずみに制限)

基本

- 限界状態を設定し、それを適切に照査できる手法
 レベル2地震動に対する鋼構造物の限界状態 終局限界: (1) 局部座屈と部材座屈の連成 (2) 低サイクル疲労 損傷限界: 塑性変形による損傷度(健全度)
 照査
 - 終局限界に対する照査 ← 安全性照査 損傷限界に対する照査 ← (地震後の)使用性照査

耐震安全性照査法のメニュー

照查法	応答值 S (Demand)	限界值 R (Capacity)	性能 指標	適用範囲			
変位 照査法	等価1自由度系の複 合非線形動的解析 る _{max}	構造全体の <i>Pushover</i> 解析 る _u	変位	基本モード卓越			
ひずみ 照査法	構造全体の 複合非線形動的解析 ε _a) _{max}	終局ひずみ (経験式) ε _u	ひずみ	制限無し			
<mark>性能照查</mark> : $\gamma_i S_d / R_d \leq 1.0$ S_d : 設計応答值 R_d : 設計限界值							

Note: 解析は、はり要素を用いて行う. 局部座屈は限界値で考慮.

■ 変位照査法→*Pushover*解析による終局変位 ● ひずみ照査法→終局ひずみ(経験式)

Pushover 解析

- ・はり要素を用いた複合非線形静的解析
- ・局部座屈無視(終局の判定に終局ひずみを利用)

終局ひずみ

・部材セグメントが局部座屈により変形能を失う限界に
 対応する平均最外縁ひずみ:

終局ひずみの計算(2)

終局ひずみ算定式(表19.4.1) $\frac{\mathcal{E}_u}{\mathcal{E}_v} = f(R_{f,P}/P_y) \le 20.0$ 無補剛箱形 $\frac{\mathcal{E}_{u}}{\mathcal{E}_{v}} = f(R_{f}, \overline{\lambda}_{s}, P/P_{y}) \le 20.0$ 補剛箱形 $\frac{\mathcal{E}_{u}}{\mathcal{E}_{v}} = f(R_{t}, P/P_{y}) \le 20.0$ パイプ R_f = フランジ幅厚比パラメータ 低サイクル疲労防止 = パイプ断面の径厚比パラメータ R_{\star} $\underline{P/P_v} = 軸力比$

 $\lambda_{s}^{\prime} = 補剛材細長比パラメータ$

変位照査法の流れ(1自由度系構造物)

解析結果と実験結果の比較 (全供試体)

破壞点 $\varepsilon_{n}(95\%耐力点)$

変位照査法に関するコメント

●構造全体の耐震性能を直接照査

部材座屈:はり要素による複合非線形解析(Pushover解析) 局部座屈:Pushover解析の終点の算定

●適用可能条件

基本モード卓越: 有効質量比>0.75(十分条件) ●適用可能橋梁の例

- •単柱式橋脚(含:免震橋脚)
- ・1,2層ラーメン橋脚(含:免震橋脚)
- •連続橋(〇橋軸方向,△橋軸直角方向)
- ・アーチ橋(〇橋軸直角方向,X橋軸方向)

ひずみ照査法に関するコメント

- 部材・部品の損傷度の照査で、構造全体の
 耐震性能との関連がやや希薄
- 部材座屈:はり要素を用いた複合非線形動的解析
 局部座屈:終局ひずみ
- 現行設計示方書との整合性が採りやすい.
- 汎用性があり、ほとんどの構造物に適用可能.

「鋼構造物の耐震設計 ガイドライン(JSSC)」 作成中

土木鋼構造物の動的耐震性能照査法と

TELESTAY' Marker & Commerce & Co

ALL DERMINANT LANDING

平成15年10月 日本鋼構造協会・鋼橋の性能照査型耐震設計法検討委員会

2003年

(4) まとめと将来展望

- 耐震設計においては、塑性変形による履歴減衰を期待するため、強度のみならず変形性能が重要.
- 大地震時の鋼構造物の限界状態は (1)局部座屈と全体座屈の連成,
 (2)低サイクル疲労、によって決まる場合が多い.
- 座屈に対しては研究がかなり進み照査法も確立されているが、低サ イクル疲労の照査法は研究途上、→ Research need
- 耐震照査法として変位照査法とひずみ照査法がある.
- 変位照査法は静的解析と1自由度系の動的解析ですむため、計算は 楽であるが基本モード卓越という制約がある.
- **ひずみ照査法**は、あらゆる構造物に適用出来るが、多自由度系の動的解析が必要。
- いずれの照査法でも、部材セグメントの変形能の限界を表す終局ひずみの算定式が必要(ガイドラインに公式が与えられている).
- 将来的には耐震構造から制震構造へ. → Research need

Coffee Break

Application of BRBs to Steel Arch Bridge (completed in 2004)

BRB

BRB

Hiroshima Prefecture in Japan

BRBによる高架橋落橋防止装置

(名古屋高速道路公社)

座屈設計ガイドライン講習会 (2005年10月28日,東京; 11月28日,大阪)

第20章 鋼製橋脚

名古屋大学大学院 葛 漢彬大阪大学大学院 小野 潔名古屋高速道路公社 前野 裕文

内容20.1 概説20.2 鋼製橋脚の被災例20.3 鋼製橋脚の準静的および動的性状20.4 鋼製橋脚の耐震性能を支配するパラメータ20.5 耐震設計法および耐震解析法の考え方20.6 耐震補強の考え方20.7 まとめと今後の展望

鋼製橋脚の破壊パターン 局部座屈 低サイクル疲労に伴う破壊

鋼製橋脚の変形性能の支配パラメータ 幅厚比(径厚比),細長比,軸力比, 固有周期,補剛材剛比,補剛材細長比 コンクリート充填高さ,角溶接方法 繰り返し回数,偏心率など

限界值(Capacity)算定

多くの単柱式鋼製橋脚, 1, 2層のラーメン式鋼製橋脚は 変位照査法が適用出来る.

- 単柱式橋脚(逆L型橋脚を含む) 経験式がある. 断面形は無補剛箱形, 補剛箱形, パイプ (表19.3.1~19.3.3)
- コンクリート部分充填橋脚, ラーメン式橋脚
 Pushover 解析によって求める.

支配パラメータの影響(経験式) 幅厚比 or 径厚比パラメータ

目標塑性率と細長比パラメータの最大値

補剛箱形断面

目標塑性率 µ		4	5	6	7	8
λ の最大値	М	00	0.58	0.36	0.28	0.24
	M-S	0.46	0.32	0.26	0.23	0.20

 $(P/P_y=0.2, R_f=0.35)$

目標塑性率と細長比パラメータの最大値

 $(P/P_y=0.2, R_t=0.05)$

変形性能の高い鋼製橋脚の 繰り返し載荷実験結果

30%充填

ハイブリッド地震応答実験結果 コンクリート無充填および充填(λ, / h = 0.2)鋼製橋脚

ハイブリッド地震応答実験結果 コンクリート無充填および充填($\lambda_c/h=0.2$)鋼製橋脚

(まとめ)変形性能の高い鋼製橋脚

(a) コンクリート部分充填

単柱式橋脚の場合 $\lambda_c / h = 0.2 \sim 0.3$

(b)小幅厚比断面,高剛性補剛材 $R_f \cong 0.35 \quad \gamma / \gamma^* \ge 3.0$ $a \cong b \quad a =$ ダイアフラム間隔

鋼製橋脚の耐震設計法

新技術小委員会(土木学会, 1996)

- コンクリート部分充填鋼製橋脚の地震時保有水平耐力照査法
 Pushover解析
 - ・破壊基準(平均圧縮ひずみが終局ひずみに達する状態)

次世代土木鋼構造委員会(JSSC, 2000)

 保有水平耐力照査法に代わり、変位照査法またはひずみ照査 法が提案された。

道路橋示方書·V 耐震設計編 (日本道路協会,2002)

- 動的照査法による耐震性能の照査
 ぜい性的破壊を防ぎ、じん性(変形能)を確保できる構造の採用
- 残留変形の制限
- ・アンカー部の設計(塑性化させない)

(a)矩形断面橋脚における角割れ

ぜい性的破壊モード

鋼製橋脚の耐震補強 (日本道路協会参考資料)

基本的な考え方

- 基礎、アンカー部への負担を小さくするため、橋脚の変形能を向上させ、水平耐力が過度に上がらないような補強工法の採用
- ・橋脚各断面の耐力とアンカー部の耐力の大小関係に応じて、 塑性ヒンジの位置および補強手法を検討
- 耐震補強設計手法として、コンクリート充填による方法、角補 強による方法を例示

鋼製橋脚の耐震補強例

ゆりかもめ

高カボルトによる角補強

高カボルトによる角補強の適用

耐震補強例(名古屋高速道路公社)

 局部座屈に対する耐震性能照査はほぼ 確立されている.

耐震性能の向上・補強策:
 コンクリート充填,小幅厚比(小径厚比),
 高剛性補剛材,角補強など

- ・低サイクル疲労に伴う脆性的破壊評価法の確立
- ・ラーメン隅角部のひずみ集中低減構造
- ・高靭性鋼の応用
- ・残留変位低減構造の開発
- 多方向地震動の影響
- ・制震構造による耐震性向上
- ・大型震動台による破壊シナリオの検証

兵庫県南部地震における鋼製橋脚 の被災例

・倒壊した鋼製橋脚

細長比パラメーク

軸圧縮力

補正補剛材細長比パラメータ

繰り返し回数

偏心率