ジャイロセンサーによる構造物の耐震性能モニタリング

Health Monitoring Method for Earthquake Damages of Structures Using Gyro Sensor

鈴木雄伸*・増村良**・壁谷勝幸***

Takanobu SUZUKI, Munef OIRI and Toshimi KABEYASAWA

* 正会員 博(工) 東洋大学助教授 工学部環境建設学科（〒3508585 川越市鷹井2100）
** 正会員 Ph.D. 東京大学地震研究所教授 （〒1130032 文京区弥生1-1-1）
*** 工博 東京大学地震研究所教授 （〒1130032 文京区弥生1-1-1）

After great earthquakes, quick assessment for damaged level of structures is needed. In order to develop compact health-monitoring sensors for earthquake damages, this paper studies a gyro-sensor measuring angular velocity. Data regarding the measurement characteristics of a gyro-sensor were obtained in large scaled experiment of a concrete structure, which was a pilotes-type structure. Comparing between angular motion and other measured data, angular motion is concerned with relative displacement between the base of the structure and the upper parts. Also gyro-sensors detect permanent deformation of the structure. Although further studies are definitely needed, we confirmed the possibility of the sensor being used for health-monitoring at the time of earthquakes.

Key Words: gyro-sensor, safety examination, health monitoring, angular motion

1. はじめに

地震発生直後に、構造物・堆積物の健全性を迅速に評価することは重要であり、該当する施設の使用者は安全性あるいは補修の必要性などの情報を要望する。熟練する技術者の目視点検がなっている現状では、地震発生後すみやかにというリアルタイム性に課題があると考えられる。したがって、十分な精度で構造物・堆積物の健全性を評価するセンサーを開発することが望まれる。また地震とは別に、設置環境に影響されて変化する経年劣化に対しても健全性評価が必要であり、異常が生じていないことを評価できる、構造物・堆積物のホームドクターのような機能も、上記のセンサーによると望まれる。

以上の観点から、本研究では、堆積物を計測できるジャイロセンサーに注目し、ねじれ振動のような複雑な振動をする構造物の挙動を計測し、損傷の進展にともなって評価結果がどのように変化するかを分析している。角度の変化を直接計測できるジャイロセンサーは、構造物・堆積物の傾斜角度を精度よく計測できることが期待される。これらの研究によれば、普及型の安定加速度計は複数個配置し、適切なフィルタリング処理を行うことにより、相対変位を精度よく計測できるとされている。この研究では、偏心ピロティ構造の堆積物と相対変位の関係を分析することにより、ジャイロセンサーの耐震性能モニタリングにおける有効性を分析している。

2. 実験概要と計測データ

2.1 実験の概要

RC構造物の最終限界状態を再現する地震実験が、東京大学地震研究所と防災科学研究技術研究所の共同研究で行われている。2011年に行われた偏心ピロティ構造物の実験の詳細は、壁谷勝幸の著者等の研究で報告されているが、今回実験の特徴は、普及型加速度計による耐震性能モニタリングの手法を開発することを目的として、RC供試体に普及型のセンサーの試作品を取り付け、計測データを取得している。その分析結果の一部は、庄らの研究で報告されているが、普及型のセンサーでも高精度な地震計に近い計測が可能であることが確認されている。

実験状況の写真を写真-1に示す。本研究では、同一の試験体を用いて、入力レベルを徐々に上げ、堆積物を破壊するようにを追跡した5ケースに応じて、表-1に示されるような実験ケースを示している。振動台に固定した上部で計測した揺れの大きさを表中に示しているが、加速度で80Galから660Gal、速度で7cm/sから34cm/sの地震動を入力したときの運動を計測している。損傷の状態は、ケース3で柱にびびわれが発生し始め、ケース4ではさらにびびわれが発生し、ケース5でピロティ幅面の柱がせん断破壊

- 747 -
写真-1 実験の様子

表-1 実験ケースと入力地震動

<table>
<thead>
<tr>
<th>ケース名</th>
<th>ベース加速度 (Gal)</th>
<th>ベース速度 (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケース1</td>
<td>80.9</td>
<td>7.3</td>
</tr>
<tr>
<td>ケース2</td>
<td>182.2</td>
<td>15.3</td>
</tr>
<tr>
<td>ケース3</td>
<td>360.7</td>
<td>23.1</td>
</tr>
<tr>
<td>ケース4</td>
<td>663.6</td>
<td>34.3</td>
</tr>
<tr>
<td>ケース5</td>
<td>601.9</td>
<td>30.1</td>
</tr>
</tbody>
</table>

図-1 フロアの構造とセンサーの配置

図-2 ケース1, GY1-xの観測波形

(a) GY1-xの角速度

(b) GY1-xの角度

(c) SB2-yの加速度記録

(d) GY1-zの角度

(e) GY1-zの角度

図-3 ケース5の観測波形

2.2 計測データ

構造物の振動計測には加速度計が用いられてきたが、ジャイロセンサーを用いた計測を試みる。ジャイロセンサーは軍事目的が生であった時代は高価なセンサーであったが、自動車の制動利用など民生用途が盛んになって価格も安くなってきた背景がある。今回の実験では、リングの振動を利用したシリコンセンシングシステムズ社製のジャイロセンサー（CRS03-02）を用いることとした。最大振幅で100deg/sまで計測可能な仕様であるが、ノイズレベルや周波数特性などを普及型のサーボ加速度計のデータと対比する。実験にあたり、3成分の角運動を記録できる小型のジャイロセンサーと、普及型のサーボセンサーを試作した。

計測ポイントはジャイロセンサー4箇所、普及型サーボセンサー8箇所としたが、今回の報告では、2階の床に
表-2 主な計測結果

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>ケース1</th>
<th>ケース2</th>
<th>ケース3</th>
<th>ケース4</th>
<th>ケース5</th>
</tr>
</thead>
<tbody>
<tr>
<td>角速度</td>
<td>deg/s</td>
<td>0.48</td>
<td>0.51</td>
<td>4.01</td>
<td>8.68</td>
<td>14.53</td>
</tr>
<tr>
<td>角度</td>
<td>deg</td>
<td>0.21</td>
<td>0.24</td>
<td>0.21</td>
<td>0.38</td>
<td>3.05</td>
</tr>
<tr>
<td>1F加速度</td>
<td>Gal</td>
<td>80.9</td>
<td>182.2</td>
<td>360.7</td>
<td>663.6</td>
<td>601.9</td>
</tr>
<tr>
<td>1F速度</td>
<td>cm/s</td>
<td>7.3</td>
<td>15.3</td>
<td>23.1</td>
<td>34.3</td>
<td>30.1</td>
</tr>
<tr>
<td>1F変位</td>
<td>cm</td>
<td>1.04</td>
<td>2.2</td>
<td>3.41</td>
<td>3.43</td>
<td>3.3</td>
</tr>
<tr>
<td>2F加速度</td>
<td>Gal</td>
<td>100.1</td>
<td>216.8</td>
<td>679.2</td>
<td>902.9</td>
<td>1294.7</td>
</tr>
<tr>
<td>2F速度</td>
<td>cm/s</td>
<td>83.5</td>
<td>190.6</td>
<td>448.4</td>
<td>809.4</td>
<td>880.8</td>
</tr>
<tr>
<td>2F変位</td>
<td>cm</td>
<td>7.9</td>
<td>16.7</td>
<td>30.1</td>
<td>57.3</td>
<td>54.7</td>
</tr>
</tbody>
</table>

3. 振動性状の分析

3.1 角運動の計測結果

今回は、新しい試みとして、偏心ピロティ構造の応答をジアロセンサーで計測した。実験用に試作したセンサーには定常的に 0.5deg/s ほどのノイズが混入し、最も入力が小さいケース 1においては、加振による運動が見出せない状態であった。この様子を図-2 に示している。観測データの中で最大の角度速度振幅となったケース 5 の GY1 の観測波形を図-3 に示す。図(a)は x 軸まわりの角速度波形であり、(b)はそれぞれ 1 回積分した角度の波形である。縦軸の単位はそれぞれ deg/s, deg であり、4 個のセンサーとも同様の波形となっている。ケース 5 では柱が崩壊し、上階が大きく変形したが、約 7 度の角度は実験結果とよく一致している。

図(c)はケース 5 における SB2, y 軸方向の加速度記録を示している。特徴的のはゼロ線が階段状に変化している点である。計算の結果、約 120Gal だけ軸線がずれているが、傾斜角に換算して約 7 度となる。サーボ加速度計の DC 成分は傾斜計と同じ出力となる。解析分の高いた加速度計のドリフト成分から傾斜角の情報が得られることが確認された。

図(d)は角速度が最大となった z 軸周りの角速度の波形であり、(e)は角度の波形である。z 軸周りで約 2 度の変化が生じているのがわかる。またグラフは省略しているが、建物のロックダウン運動をとらえた y 軸周りの角速度も計測されている。

加速計記録から変位を計算するには積分計算を 2 回行う必要があり、安定した計算結果を得るのに適切なフィルター処理が必要とする。ジアロセンサーでは角度を計測する構造であり、角度の計算は積分計算 1 回ですむために、容易に永久変形角が計算できる利点があると考えられる。

3.2 動的応答の特徴

今回の振動実験は、構造体の破壊までの実験であり、計測結果の分析から偏心の動的応答の特徴を考察する。はじめに各実験ケースの最大応答値について分析する。表-2 は実験ケースごとに角度速度、角度、基礎部分の加速度、速度、変位、1F の加速度、速度、2F の加速度、速度、および相対変位についてまとめた結果である。加振方向である並進運動の x 軸、角運動の z 軸についてまとめてある。角度計測においてはケース 5 では永久変位も含んだ応答値となっている。また SB2 は柱側、SB4 は壁側のセンサーである。表-2 をもとに相関分析を行う。表-2 では省略しているが、RC 建物の上階部分はおよそ剛体的な挙動となり、2F で観測される運動と同様であった。

図-4(a)は入力速度と応答速度の関係を示している。耐震壁側の SB4 はすべての実験ケースで、入力速度とおよそ同じ速度となっているが、柱側の SB2 は入力が大きくならないと入力の 2 倍ほどの応答値となっている。(b)は入力速度と相対変位の関係を示している。壁側、柱側を別々に計算しているが、壁側の相対変位はわずかであり、柱側の相対変位は大きくなる結果となっている。建物が崩壊に至ったケース 5 では1cm の相対変位が発生している。柱側の相対変位は大きな値となっており、最大で 3cm 以上である。ケース 5 におい
図4 振幅に注目した分析結果

(a)入力速度と応答速度
(b)入力速度と相対変位
(c)入力速度と角速度
(d)相対変位と角速度

図5 運動の模式図

変形が大きくなる部位がある場合、構造を簡略化して、運動変形方程式を考案する。図5に示すように、運動状態は示す。回転運動の関数を$O(x_0, y_0)$、並進運動の関数を$G(x, y)$、z軸まわりの回転運動の角速度をθ、回転中心と重心の距離をhとする。回転のz軸周りの回転慣性をI_z、質量をm、水平パネをK_x、回転パネをK_θとすると自由振動の運動方程式は、(x_0, θ)に関して、以下の式となる。

$$\begin{pmatrix} I_z + mh^2 & mh \\ mh & m \end{pmatrix} \begin{pmatrix} \ddot{x}_0 \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} K_x & 0 \\ 0 & K_\theta \end{pmatrix} \begin{pmatrix} x_0 \\ \theta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$ (1)

自由振動数解析を行うと、振動数方程式は次式となる。
図6 角度と相対変位の波形とスペクトルの比較

\[\omega^4 - \left(\omega_0^2 + \omega_s^2 \left(1 + \frac{m h^2}{I_z} \right) \right) + \omega_n^2 \omega_s^2 = 0 \quad (2) \]

ただし、\(\omega_0^2 = \frac{K_x}{I_z}, \quad \omega_s^2 = \frac{K_s}{m} \) としている。振動数方程式より、2個の固有振動数が計算される。この2つの実根を\(\alpha_1, \alpha_2 \) として振動モード形をマトリクス表示すると以下となる。

次に強制振動の運動方程式を考える。構造体の支点が水平加速度\(a(t) \) で運動する場合を考える。重心位置の相対変位を\(u(t) \)、相対加速度を\(\ddot{u}(t) \) すると
\[
\begin{pmatrix}
1 + m + mh^2 & mh \\
 mh & m
\end{pmatrix}
\begin{pmatrix}
\dot{\theta} \\
\dot{u}
\end{pmatrix}
+ \begin{pmatrix}
K_o & 0 \\
0 & K_s
\end{pmatrix}
\begin{pmatrix}
\theta \\
u
\end{pmatrix}
= \begin{pmatrix}
-mh \\
-m
\end{pmatrix}
a(t)
\] (4)

となる。断面力に書き直すと、復元力と慣性力のつもりあい方程式となっている。

\[
\begin{pmatrix}
M \\
Q
\end{pmatrix}
= \begin{pmatrix}
K_o & 0 \\
0 & K_s
\end{pmatrix}
\begin{pmatrix}
\theta \\
u
\end{pmatrix}
= \begin{pmatrix}
1 + m + mh^2 & mh \\
 mh & m
\end{pmatrix}
\begin{pmatrix}
\dot{\theta} \\
\dot{u}
\end{pmatrix} + \begin{pmatrix}
mh \\
-m
\end{pmatrix} a(t)
\] (5)

さらにモード解析を行うと、モードごとの一般化質量は、

\[
M_s = I_s B_s^2 + 2mhB_s + m
\] (6)

一般化外力は

\[
P_s = -m(hB_s + 1)
\] (7)

と計算される。基準座標での運動方程式は減衰を考えない場合に次式となる。

\[
\ddot{q_s} + \omega_n^2 q_s = \frac{P_s}{M_s} a(t) = \beta_s a(t)
\] (8a)

\[
\begin{pmatrix}
\theta \\
u
\end{pmatrix}
= \begin{pmatrix}
B_1 & B_1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
q_1 \\
q_2
\end{pmatrix}
\] (8b)

1次モードだけに注目すれば、

\[
\theta = \frac{\omega_1^2 - \omega_2^2}{\hbar \omega_1^2} u
\] (9)

となり、角度と相対変位は比例関係にあることが示された。高次モードの影響を無視できるものならば、ねじれ角と相対変位はよく似た時間変化をすることになる。

図-6にケース1とケース2を除いた3ケースの角運動と変位の計算結果を示している。相対変位は2Fの重心位置のx成分を計算しており、角度はGY1のz軸のデータを用いている。表-2の計算では、永久角変形を計算するためにフィルター処理を行っていなかったが、相対変位と比較するために、角速度から角度を計算するのがローカットフィルターを用いて、破壊に伴う低振動成分を取り除いている。角度の絶対値はdeg、変位の絶対値はcmとしている。

ケース3では、加振の前後で角度の計算結果にノイズがみられるが、相対変位ではノイズが小さい。計算時のハイカットフィルターの迫力と考えられる。ヒステリシスのピーケ値は1するものの、角度θと相対変位uの波形はよく似ている。またフーリエスペクトルも同じに近似している。ケース4、ケース5ともに、重心位置の相対変位波形と角度変位の波形はよく一致する。ケース5のフーリエスペクトルの低振動成分でやや異なる傾向となるが、破壊に伴う長周期の成分をフィルター処理した影響と思われている。式(9)で示したように、1次モードが卓越するならば、角度θと相対変位uは比例するが、今回の実験では、破壊するレベルまで1次モードが支配的であったといえる。

表-3に図-6のグラフで示した特性値をまとめている。前述のように振動成分のみを取り出したフィルター処理の関係で、最大角度は表-2の変位より若干大きくなっている。ケース3、ケース4、ケース5と入力が大きくになるにつれて、角度、相対変位ともピーク振動数が低下しており、その値はおよそ一致している。またケース2は、数のピークがあるスペクトル形状であり、完全には一致していないが、ピーク振動数はほぼ一致している。表中に単位変位あたりの角度の比率（角度/変位）を計算している。振幅が増大してピーク振動数が低下するにつれて0.4付近から0.7へと比率が大きくとなっている。これは構造物の損傷の進行に関連すると考えられ、柱の損傷により、回転中心が偏側に移動した影響と考えられる。

4. ジャイロセンサーによる健全性評価

4.1 解析方法

今回使用したジャイロセンサーはノイズレベルが高く、入力が小さい場合には角度検知の精度に問題があるが、ある程度振幅が大きくなると、相対変位とよく関連をもつことを前章で示した。相対変位の計算には少なくても2点の時刻歴データが必要であるが、ジャイロセンサー

<table>
<thead>
<tr>
<th>実験ケース</th>
<th>最大角度（deg）</th>
<th>ピーク振動数（Hz）</th>
<th>最大相対変位（cm）</th>
<th>ピーク振動数（Hz）</th>
<th>角度/変位（deg/cm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケース2</td>
<td>0.020</td>
<td>1.85</td>
<td>0.045</td>
<td>1.88</td>
<td>0.44</td>
</tr>
<tr>
<td>ケース3</td>
<td>0.139</td>
<td>4.28</td>
<td>0.341</td>
<td>4.28</td>
<td>0.41</td>
</tr>
<tr>
<td>ケース4</td>
<td>0.346</td>
<td>3.47</td>
<td>0.703</td>
<td>3.60</td>
<td>0.49</td>
</tr>
<tr>
<td>ケース5</td>
<td>1.002</td>
<td>1.70</td>
<td>1.425</td>
<td>1.70</td>
<td>0.70</td>
</tr>
</tbody>
</table>
の場合は1点の時刻歴で変形を追跡できる利点がある。そこでジャイロセンサーから得られる時刻歴データを利用して、構造物の被害を検知する方法について検討する。

得られるデータは加振方向に対応する2軸周りの角速度 \(\dot{\theta} \) のみとする。角度 \(\theta \) は角速度 \(\dot{\theta} \) を数値積分することにより、また角加速度 \(\ddot{\theta} \) は角速度 \(\dot{\theta} \) を数値微分することにより求められる。角度 \(\theta \) には長周期ノイズ、角加速度 \(\ddot{\theta} \) には短周期ノイズが混入するため、適当なフィルター処理が必要となる。3章の分析により、実験に用いた構造体は1次の振動モードが卓越し、その振動数において角運動、並進運動の速さが著しい。特定の振動数領域に注目することにより、振動性状の変化をとらえられると考える。そこで、角速度 \(\dot{\theta} \) のピーク周波数を中心としたバンドパスフィルター（狭帯域）によりそれぞれを整波する。使用したバンドパスフィルターは、ピーク振動数を \(f_p \) として以下の関数で計算した。

\[
H(f) = \begin{cases} \sin^2 \left(\frac{\pi f}{2f_p} \right) & (0 \leq f \leq 2f_p) \\ 0 & (f > 2f_p) \end{cases}
\] (10)

角速度を台形積分して角度に変換した後、バンドパスフィルター処理をした結果を角度の時刻歴とし、中心差分で角加速度を計算し、角度と同じバンドパスフィルター処理を行った結果を角加速度の時刻歴としている。

角運動の方程式による解析により、角加速度と角度は比例関係になることが予想される。そこで \(\theta(t), \dot{\theta}(t) \) のヒステリシスを描いて、損傷程度との関連を分析する。なお、損傷の進行によって、ピーク振動数が低下していくのは表3に関連して説明したとおりである。

4.2 解析結果

図7はそれぞれのピーク振動数を中心とした狭帯域フィルターを通過させた結果である。縦軸、横軸を固定し
て描いているために，(a)のケース 2 は原点付近のごく小さな変化となっている，(b)のケース 3 では比例関係はケース 2 と同様で，ヒステリシスの範囲がひろがっている，
(c)のケース 4 では，振動が緩やかになると同時に，比例
線にのらない不規則な振動が加わってくる，さらに(d)の
ケース 5 では，ヒステリシスが箱円状にひろがり，角度
も±1deg の範囲で繰り返し運動が何回も生じているの
がわかる，ケース 4 とケース 5 は入力した地震動がおよ
そ同程度であり，最大角加速度でも，150 deg/s² と同程
度となっているが，横軸では数倍の差となっている，角
加速度を外力，角度を応答とみれば，損傷の進行によっ
て，非線形性が強まって，ヒステリシスが変化したと考え
られる，ヒステリシスの傾きとひろがりの変化は，健
全性指標として有望と考えられるが，その定量化は今後
の課題である。

ジャイロセンサーを用いた被害検知の可能性について
検討したが，相対変位ともよい相関を示し，構造特性と観
測結果から得る換算係数で角度から相対変位が計算可
能である，また，フィルター処理をさらに工夫するなど
の追加検討が必要であるが，ジャイロセンサーの1成分
で，外力と応答の関係を概ね計算できることも確認でき
た。

5. おわりに

建物・構造物の地震後の健全性を評価できるセンサー
の開発に関連して，ジャイロセンサーの適用性について
実験的研究を行った，偏心ピロティ建物の大型振動台に
よる地震実験で，試作したジャイロセンサーを取り付け
，計測データの分析を行った，ノイズレベルがやや高く，
改善の必要はあるものの，角運動と相対変位はほとんど
同じ運動となり，ジャイロセンサー1 個で損傷度合いを
推定できることが確認された，ジャイロセンサーによっ
て計測される角運動の振幅，振動数特性は損傷の進行と
関連しており，ないし振動が卓越する構造の場合には，
有用な指標となることが期待される，実際の建物・構造
物の健全性評価においても，センサーの個数や配置方法
などの課題があるが，比較的安価に製作できるジャイロ
センサーも，耐震性能モニタリングに利用できることが
確認された。

謝辞

東京大学地震研究所ならびに防災科学技術研究所の実験
にかかわった皆様には貴重な計測の機会を与えいただいて
き，感謝いたします，また東京ガス（株）の小金丸氏，（株）
山武の桑田氏には，センサーの試作，現地での計測でお
世話になり，感謝いたします。

参考文献

1) 庄松建，他：偏心ピロティ構造の地震実験その4 地
震計による相対変位モニタリング，平成14年日本建築学
会全国大会，2002
2) 坂本正海：鉄筋コンクリート造建築物の限界状態と
地震動，強震動予測シンポジウム，2003
3) 坂本正海，他：鉄筋コンクリート造偏心ピロティ建
物の地震実験（その1），第3 回構造物の破壊過程解明
に基づく地震防災向上に関するシンポジウム論文集，
pp.165-170,2002
4) 金沢雄，他：鉄筋コンクリート造偏心ピロティ建物の
地震実験（その2），第3 回構造物の破壊過程解明に基
づく地震防災向上に関するシンポジウム論文集，
pp.171-176,2002

（2003年4月18日受付）